Разработка алгоритмов и модулей программ для высокоточного решения сложных трехмерных задач магнитостатики

О.И. Юлдашев, М.Б. Юлдашева

Лаборатория информационных технологий ОИЯИ, Дубна

1. Введение

Как известно, конечно-элементные программы нового поколения предполагают возможность использования:

 алгоритмов построения аппроксимаций высокого порядка для искомого решения краевой задачи;

2) алгоритмов адаптивного построения этого решения;

3) параллельных вычислений, в частности, для указанных алгоритмов.

Разработка каждого из перечисленных пунктов в приложении к решению сложных трехмерных нелинейных задач магнитостатики представляет собой непростую трудоемкую задачу.

В работах авторов [1,2] развивается подход к построению алгоритмов из первых двух пунктов на основе разрывных базисных функций высокого порядка аппроксимаций из специальных функциональных пространств. Разрывные базисные функции и основанные на их использовании проекционно-сеточные методы [2–6] оптимально подходят для высокоточного параллельного решения сложных трехмерных нелинейных задач магнитостатики. В этих подходах матрицы соответствующих систем алгебраических уравнений имеют разреженные блочные структуры, а сгущение сетки в требуемых подобластях практически не порождает "лишних"неизвестных. Аппроксимации высокого порядка с включением, если это необходимо, локального учета особенностей решения задачи обеспечивают требуемую высокую точность при относительно небольшом числе неизвестных.

2. Виды разрывных базисных функций

Разрывные базисные функции можно разделить на два класса: интерполяционные и проекционные. Здесь сразу следует отметить, что в стандартном методе конечных элементов обычно используются только непрерывные интерполяционные функции.

Пусть $I_m(f)$ - приближение к функции f, полученное с помощью интерполяционных базисных функций. Для него справедливы равенства

$$I_m(f)(x_k) = f(x_k), \quad k = 1, ..., m$$

где x_k (k = 1, ..., m) - узлы конечного элемента, которые используются для построения интерполяционных базисных функций.

Приближение $P_m(f)$ к той же функции, полученное с помощью проекционных базисных функций, характеризуется равенствами

$$\int_{w_e} (f - P_m(f)) v_k dw = 0, \quad k = 1, ..., m,$$

где w_e - конечный элемент, на котором строится приближение, v_k (k = 1, ..., m) - проекционые базисные функции.

В обоих случаях справедливы следующие оценки [7]:

$$\begin{split} \|f - I_m(f)\|_{W_2^n(w_e)} &\leq C_1 \cdot h_e^{m+1-n} |f|_{W_2^{m+1}(w_e)}, \\ \|f - P_m(f)\|_{W_2^n(w_e)} &\leq C_2 \cdot h_e^{m+1-n} |f|_{W_2^{m+1}(w_e)}, \\ &\forall f \in W_2^{m+1}(w_e), \end{split}$$

где $\|\cdot\|_{W_2^n(w_e)}$, $|\cdot|_{W_2^{m+1}(w_e)}$ - норма и полунорма в пространствах Соболева $W_2^n(w_e)$ и $W_2^{m+1}(w_e)$ соответственно, $n \le m+1$, C_1 , C_2 - положительные константы, h_e - диаметр элемента w_e .

В векторном случае интерполяционные приближения $\mathbf{I}_{\mathbf{m}}^{\mathbf{H}}(\mathbf{u})$, $\mathbf{I}_{\mathbf{m}}^{\mathbf{I}}(\mathbf{u})$, $\mathbf{I}_{\mathbf{m}}^{\mathbf{S}}(\mathbf{u})$ вектор-функции **u** строятся с помощью гармонических, безвихревых и соленоидальных векторных интерполяционных базисных функций соответственно в рамках понятия векторного узлового конечного элемента, введенного авторами в [1], и удовлетворяют уравнениям

$$\nabla \cdot \mathbf{I}_{\mathbf{m}}^{\mathbf{H}}(\mathbf{u}) = 0, \quad \nabla \times \mathbf{I}_{\mathbf{m}}^{\mathbf{H}}(\mathbf{u}) = 0,$$

 $abla imes \mathbf{I}_{\mathbf{m}}^{\mathbf{I}}(\mathbf{u}) = 0, \quad \nabla \cdot \mathbf{I}_{\mathbf{m}}^{\mathbf{S}}(\mathbf{u}) = 0.$ Проекционные приближения $\mathbf{P}_{\mathbf{m}}^{\mathbf{H}}(\mathbf{u}), \quad \mathbf{P}_{\mathbf{m}}^{\mathbf{I}}(\mathbf{u}),$

проекционные приолижения $\mathbf{P}_{\mathbf{m}}^{\mathbf{s}}(\mathbf{u})$, $\mathbf{P}_{\mathbf{m}}^{\mathbf{s}}(\mathbf{u})$, соответствующих векторных проекционных базисных функций, также удовлетворяют уравнениям

$$\begin{split} \nabla \cdot \mathbf{P}_{\mathbf{m}}^{\mathbf{H}}(\mathbf{u}) &= 0, \quad \nabla \times \mathbf{P}_{\mathbf{m}}^{\mathbf{H}}(\mathbf{u}) = 0, \\ \nabla \times \mathbf{P}_{\mathbf{m}}^{\mathbf{I}}(\mathbf{u}) &= 0, \quad \nabla \cdot \mathbf{P}_{\mathbf{m}}^{\mathbf{S}}(\mathbf{u}) = 0. \end{split}$$

Отметим, что точность приближений обоих классов удобно характеризовать параметром m, который означает, что приближение является точным на градиентах от m многочленов или на роторах от m векторных многочленов из соответствующих функциональных пространств.

Для построения высокоточных аппроксимаций магнитного поля в воздушной и ферромагнитных средах авторами разработаны гармонические, безвихревые и соленоидальные базисные функции обоих классов. На рис. 1 показан пример расположения сгущающихся узлов для последовательностей аппроксимаций с возрастающей точностью. Таблица 1 иллюстрирует сходимость интерполяций с помощью векторных узловых безвихревых негармонических элементов в сравнении с обычной лагранжевой интерполяцией. Наилучший результат интерполяции безвихревого поля в области $[-1,1]^3$ (жирный шрифт), представленного в виде суммы градиентов от обычных многочленов до седьмой степени включительно, получен с помощью безвихревого 45-узлового элемента. Обычные лагранжевые элементы дают большую погрешность, даже если число узлов увеличить более чем в 2 раза.

Рис. 1: Сгущающиеся узлы на гексаэдре для контроля сходимости безвихревых негармонических приближений:•- 15 узлов; •,• - 23 узлов; •,•,* - 45 узлов

Таблица 1: Примеры сходимости интерполяций

		Погрешность	
		интерполяции	
Тип конечных	Число	безвихревого	
элементов	узлов	негармонического	
		поля	
Векторные			
узловые	15	2.1898E-01	
безвихревые	23	6.3755E-02	
негармонические	45	1.1083E-02	
Лагранжевые	27	1.8074E-01	
	64	6.4156 E-02	
	125	1.5832E-02	

3. Граничный метод взвешенных невязок с билинейными формами непрерывности

Построив аппроксимации высокого порядка в каждом конечном элементе, точно удовлетворяющие уравнениям магнитостатики, для получения решения краевой задачи во всей расчетной области необходимо учесть условия связи на границах между элементами, которые задаются в виде специальных билинейных форм непрерывности для скалярных и векторных функций. Краевые условия учитываются с помощью метода взвешенных невязок.

Сформулируем обобщеннаю задачу для нахождения гармонической скалярной функции φ в области Ω , если заданы следующие условия: $\varphi = \varphi_d$ на части границы области Γ_d и $\partial \varphi / \partial n = \varphi'_n$ на части границы области Γ_n [2]. Требуется найти функцию $\varphi \in V(P_h)$, такую что

$$B_h(\varphi, v) = F_h(v), \quad \forall v \in V(P_h),$$

где билинейная форма B_h и функционал F_h имеют вид:

$$B_{h}(\varphi, v) = \int_{\Gamma_{d}} \varphi v d\sigma + \int_{\Gamma_{n}} \frac{\partial \varphi}{\partial n} \frac{\partial v}{\partial n} d\sigma + \int_{\Gamma_{n}} ([\varphi][v] + [\nabla \varphi] \cdot [\nabla v]) d\sigma,$$
$$F_{h}(v) = \int_{\Gamma_{d}} \varphi_{d} v d\sigma + \int_{\Gamma_{n}} \varphi_{n}^{'} \frac{\partial v}{\partial n} d\sigma.$$

Здесь пространство $V(P_h)$ зависит от разбиения P_h расчетной области на конечные элементы. Через Γ_{int} обозначена внутренняя граница между конечными элементами $w_l \in P_h, l = 1, \ldots N$, через [u] - оператор скачка функции u на границе $\Gamma_{lk} = \partial w_l \cap \partial w_k$. $\forall w_k, w_l \in P_h, k \neq l$:

$$[u]|_{\Gamma_{lk}} = \lim_{x \to \Gamma_{lk}} u(x)|_{w_l} - \lim_{x \to \Gamma_{lk}} u(x)|_{w_k}.$$

В [2] доказана теорема о том, что билинейная форма B_h является непрерывной, обладает свойством галеркинской ортогональности и коэрцитивна (V - эллиптична). Для приближенного решения обобщенной задачи доказано также свойство наилучшей аппроксимации.

Для нахождения гармонической векторфункции **u** в области Ω при условии, что $\mathbf{u}_{\tau} = \mathbf{u}_{\tau}^{(*)}$ на части границы области Γ_d и $u_n = u_n^{(*)}$ на части границы области Γ_n , обобщенная задача формулируется следующим образом. Требуется найти вектор-функцию $\mathbf{u} \in \mathbf{V}(P_h)$, такую что

$$\mathbf{B}_h(\mathbf{u},\mathbf{v}) = \mathbf{F}_h(\mathbf{v}), \quad \forall \mathbf{v} \in \mathbf{V}(P_h),$$

где билинейная форма \mathbf{B}_h и функционал \mathbf{F}_h имеют вид:

$$\mathbf{B}_{h}(\mathbf{u},\mathbf{v}) = \int_{\Gamma_{d}} \mathbf{u}_{\tau} \cdot \mathbf{v}_{\tau} d\sigma + \int_{\Gamma_{n}} u_{n} v_{n} d\sigma + \int_{\Gamma_{d}} ([\mathbf{u}] \cdot [\mathbf{v}] + \sum_{k=1}^{3} [\nabla u_{k}] \cdot [\nabla v_{k}]) d\sigma,$$
$$\mathbf{F}_{h}^{\Gamma_{int}} = \int_{\Gamma_{d}} \mathbf{u}_{\tau}^{(*)} \cdot \mathbf{v}_{\tau} d\sigma + \int_{\Gamma_{n}} u_{n}^{(*)} v_{n} d\sigma.$$

Билинейная форма \mathbf{B}_h также является непрерывной, обладает свойством галеркинской ортогональности и коэрцитивна (V - эллиптична). Для приближенного решения обобщенной задачи выполняется свойство наилучшей аппроксимации.

4. Примеры сходимости приближенных решений некоторых модельных задач магнитостатики

При построении трехмерной карты магнитного поля по данным измерений его компонент на границе рассматриваемой области [8] необходимо, в частности, решать задачу Дирихле для векторного уравнения Лапласа

$$\nabla^2 \mathbf{u} = 0, \quad x \in \Omega; \quad \mathbf{u} = \mathbf{u}_{\mathbf{D}}, \quad x \in \partial \Omega$$

Решим эту задачу для $\Omega = (0, 15)^2 \times (20, 35)$ и $\mathbf{u_D} = \mathbf{B^S}$, где $\mathbf{B^S}$ - магнитное поле двух соосных катушек

$$\mathbf{B}^{\mathbf{S}}(x) = \frac{1}{4\pi} \int_{\Omega_{S}} \mathbf{J} \times \nabla \frac{1}{|x-y|} d\Omega_{y}$$

Здесь |x - y| — расстояние между точками x и $y,~\mathbf{J}(x)~=~(\pi{\cdot}1274/37.7)\mathbf{i}_{\varphi},~x~\in~\Omega_S,$ где $\Omega_S~=$ $\Omega_{S}^{(1)} \cup \Omega_{S}^{(2)}, \ \Omega_{S}^{(k)} = \{ x = (r, \varphi, z) : 9.25 \leq r \leq 10^{-10} \}$ 22.25; $0 \le \varphi \le 2\pi; \quad z_k \le z \le z_k + \sigma\}, k =$ 1, 2; $z_1 = 43.375$; $z_2 = 47.425$; $\sigma = 2.9$. С использованием формул двукратного аналитического интегрирования $\mathbf{B}^{\mathbf{S}}$ вычисляется в Ω с высокой точностью. Рассматриваемая задача сводится к решению задачи Дирихле для уравнения Лапласа относительно каждой компоненты вектора в отдельности. В таблице 2 представлены результаты *h* – *p* сходимости приближенного значения основной компоненты поля B_z^S , полученной путем решения обобщенной задачи из раздела 3. Здесь *n* порядок решаемой системы, δ - максимальная относительная погрешность. Как следует из таблицы, для достижения примерно одинаковой точности увеличение р предпочтительнее увеличения числа элементов, так как приводит к решению алгебраических систем меньшего порядка. Аналогичные результаты получены и для остальных компонент поля. Системы уравнений решались методом неполного разложения Холесского с сопряженными градиентами. Заметим, что, например, при p = 7 в расчетах используется конечноэлементная схема, которая обеспечивает компьютерную точность на трехмерных гармонических многочленах до седьмой степени включительно.

В качестве второго примера рассмотрим задачу нахождения высокоточного начального приближения для итерационного процесса оптимизации полюса спектрометрического дипольного магнита. Расчетная область Ω с границей $\partial \Omega = \Gamma_d \cup \Gamma_n$ изображена на рис.2. Требуется найти поле и, являющееся решением краевой задачи

$$\nabla \cdot \mathbf{u} = 0, \quad \nabla \times \mathbf{u} = 0, \quad x \in \Omega,$$

$$\mathbf{u}_{\tau} = \mathbf{u}_{\tau}^{(*)}, \quad x \in \Gamma_d; \quad u_n = u_n^{(*)}, \quad x \in \Gamma_n.$$

Здесь вектор-функция $\mathbf{u}^{(*)}$ имеет вид $\mathbf{B}^{\mathbf{S}}$ при $\Omega_{S} = \{x = (r, \varphi, x_{3}) : 53 \leq r \leq 100; 0 \leq \varphi \leq 2\pi; 80 \leq sign(x_{3})x_{3} \leq 105\}, \mathbf{J}(x) =$ $\pi(116.348)\mathbf{i}_{\varphi}, x \in \Omega_S$. В таблице 3 представлены результаты *p*-сходимости приближенного значения модуля поля, полученного путем решения обобщенной задачи из раздела 3 на адаптивной сетке (рис. 2). Здесь через *m* обозначен параметр проекционного приближения в каждом элементе, *n* - порядок решаемой системы уравнений, δ - максимальная относительная погрешность для модуля поля. Как следует из таблицы, при увеличении порядка системы не более, чем в 1.5 раза, погрешность убывает быстрее, чем на порядок.

5. Заключение

Высокоточное решение сложных нелинейных трехмерных задач магнитостатики требует построения адаптивных аппроксимаций высокого порядка для магнитного поля в воздушной и ферромагнитных средах. Для этой цели авторами разработаны интерполяционные и проекционные гармонические, безвихревые и соленоидальные базисные функции, в том числе на последовательности сгущающихся сеток. В частности, для построения интерполяционных приближений вектор-функции предложена концепция векторного узлового конечного элемента.

Сформулированы обобщенные краевые задачи относительно скалярных и векторных гармонических функций, для которых построены аппроксимации высокого порядка с помощью разрывных базисных функций. Билинейные формы обобщенных краевых задач содержат специальные слагаемые, которые учитывают условия связи на границах между элементами Γ_{int} и для отражения их сути названы авторами билинейными формами непрерывности. Краевые условия задач учитываются в соответствующих слагаемых в рамках метода взвешенных невязок.

Доказаны теоремы о свойствах билинейных форм, гарантирующих однозначную разрешимость соответствующих дискретизованных задач, и о свойстве наилучшей аппроксимации приближенных решений.

Для проверки предложенных подходов к решению сложных трехмерных нелинейных задач магнитостатики разработаны алгоритмы, двумерные и трехмерные программы для построения интерполяционных и проекционных приближений высокого порядка к гармоническим, безвихревым и соленоидальным полям, а также специализированные двумерные и трехмерные программы для решения линейных краевых задач методом граничных взвешенных невязок с билинейными формами непрерывности. Проведены тестовые расчеты, в которых использовались конечно-элементные схемы, обеспечивающие компьютерную точность на гармонических многочленах до 7-ой степени включительно, а также на градиентах от этих многочленов.

	Максимальная степень гармонических многочленов					
Число	p=5		p=6		p=7	
элементов	n	δ	n	δ	n	δ
$2 \times 2 \times 2$	288	0.1681E-02	392	0.3303E-03	512	0.9419E-04
$3 \times 3 \times 3$	972	0.1511E-03	1323	0.2519E-04	1728	0.7694E-05
$4 \times 4 \times 4$	2304	0.2630E-04	3136	0.4380E-05	4096	0.1028E-05
$5 \times 5 \times 5$	4500	0.7688E-05	6125	0.1181E-05	8000	0.2724E-06

Таблица 2: h - p сходимость основной компоненты поля

Рис. 2: Адаптивная сетка для примера 2

Таблица 3: *p* – сходимость модуля поля на адаптивной сетке

m	7	10	15	
n	952	1360	2040	
$\widetilde{\delta}$	0.5587E-02	0.3422 E-03	0.1371E-04	

Авторы выражают благодарность С.Е. Сычевскому, Е.А. Ламзину и В.П. Кухтину (НИИЭФА, г. С.-Петербург) за полезные обсуждения и поддержку проводимых исследований.

Работа выполнена при финансовой поддержке РФФИ (код проекта 13-01-00595а).

Список литературы

- O.I. Yuldashev, M.B. Yuldasheva. High-Order Vector Nodal Finite Elements with Harmonic, Irrotational and Solenoidal Basis Functions. Bulletin of PFUR. Series "Mathematics. Information Sciences. Physics" N 1 2013, p. 90-98
- Physics", N 1, 2013, р. 90-98.
 [2] О.И. Юлдашев, М.Б. Юлдашева. Граничный метод взвешенных невязок с разрывными базисными функциями для высокоточного решения линейных краевых задач с уравнениями Лапласа и Пуассона. Вестник РУДН. Серия Математика. Информатика. Физика, N 4, 2013.

- [3] Г.И. Марчук. Методы вычислительной математики. М.: Наука. 1977.
- [4] D.N. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements. SIAM J. Numer. Anal., v. 19, N 6, 1982, p. 742-760.
- [5] J. Jirousek, A. Wróblewski. *T-elements: State of the Art and Future Trends* Archives of computational methods in engineering, v.3,4, 1996., p 323-434.
- [6] P.B. Bochev, M.D. Gunzburger. Least-Squares Finite Element Methods. New York: Springer. 2009.
- [7] R. Hartman. Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods. In 35-th CDF/ADIGMA course ..., Belgium, 2008.
- [8] A.V. Belov, T.F. Belyakova, O.G Filatov. et al. Program Package for the Accurate Three Dimensional Reconstruction of Magnetic Fields from the Boundary Measurements Nucl. Instr. and Meth. in Phys. Res., A 513, 2003, p. 448-464.